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Density of proper delay times in chaotic and integrable quantum billiards
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~Received 19 September 2001; published 25 January 2002!

We calculate the densityP(t) of the eigenvalues of the Wigner-Smith time delay matrix for two-
dimensional rectangular and circular billiards with one opening. For long times, the density of these so-called
‘‘proper delay times’’ decays algebraically, in contradistinction to chaotic quantum billiards for whichP(t)
exhibits a long-time cutoff.
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In classical mechanics, the length of time that a sin
particle remains within a certain region of space is a uniqu
defined quantity. In quantum mechanics, however, the c
cept of ‘‘time spent in a region’’ is not well defined, becau
there is no such thing as a Hermitian ‘‘time-delay operato
@1#. For scattering in one dimension, Wigner has construc
a quantum-mechanical delay time in terms of the energy
rivative of the phase shift acquired upon scattering from
region or potential of interest@2#. His concept was genera
ized by Smith@3#, who introduced a matrix of delay times

Q52 i\S†
]S

]«
, ~1!

whereS is the scattering matrix,« is the energy of the inci-
dent particle, and\ is Planck’s constant. In addition to bein
relevant for the retardation of a wave packet, the Wign
Smith time-delay matrixQ has been shown to be related
the capacitance@4,5#, thermopower@6#, and, indirectly, to
parametric conductance derivatives@7# and quantum pump
ing @8–10#.

In this article, we consider the eigenvalues of the Wign
Smith time-delay matrix for scattering from a cavity. Th
eigenvaluestn , 1, . . . ,N of Q are known as ‘‘proper delay
times’’ @3#. A cavity coupled to the outside world via a wav
guide withN propagating channels at energy« is character-
ized by N proper delay times. In the semiclassical limit
largeN, the system is described by the densityP(t) of delay
times. Our aim is to compareP(t) for cases where the clas
sical dynamics of the cavity is chaotic or integrable. On
level of classical delay times, it is well known that the del
time distributions are different for these two cases: For
integrable cavity,Pclass(t)}t2g has algebraic tails for large
t, whereasPclassdecays exponentially for larget if the cav-
ity has chaotic classical dynamics@11,12#. Simple arguments
based on the proximity of initial conditions to trapped pe
odic orbits setg<3 for the two-dimensional square and c
cular billiards, the two examples of integrable cavities
consider here.

The densityP(t) of proper delay times for a chaotic cav
ity was calculated by Frahm, Beenakker, and one of the
thors@13,14# using random matrix theory@15#. It was found
that P(t) has a finite support,

P~t!5H 1

2pt2A~t12t!~t2t2!, t2,t,t1

0 otherwise,

~2!
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wheret65 t̄(36A8), t̄ being the average delay time. Th
density of proper delay times for an integrable cavity
markedly different, as we now show by consideration of t
rectangular and circular billiards in two dimensions.

To find the density of proper delay times for the integrab
billiards, we solve the Schro¨dinger equation in the billiard
and the leads separately, and match the wave functions a
billiard–lead interface@16#. By repeating this process for a
possible incident modes in the lead, a system of linear eq
tions is formed from which the scattering matrixS, its de-
rivative ]S/]«, and, hence, the time-delay matrixQ can be
calculated. The billiards and the leads are shown to scal
the insets of Figs. 1 and 2. To improve our statistics, we h
performed an average over the position of the lead and s
area-preserving fluctuations of the billiard aspect ratio for
rectangular billiard@17#, and the small fluctuations of th
energy « for the circular billiard. Plots of the ensemble
averagedP(t) for these two types of billiard are shown i
Figs. 1 and 2, respectively. We have studied the long-ti
asymptotics through the integrated density*tP(t8)dt8; see
the insets of Figs. 1 and 2. For largeN, the averaged density
is representative of the densityP(t) of a particular billiard,

FIG. 1. DensityP of proper delay times for a rectangular billiar
~shown in the inset!. The density P is normalized to unity,
*P(t)dt51, and the delay timest are measured in units of thei

averaget̄. The inset shows the long-time tail of the cumulativ
distribution*tP(t8)dt8, together with a~displaced! linear fit with a
slope of21.70. The delay times were taken for an incident wa
with energy near the 17 600 level of the billiard, at which the co
tact hasN541 propagating modes, and the density shown was
tained after averaging over small size-preserving variations of
shape of the billiard and the position of the lead. The circles den
the cumulative density for a single realization near the 3.53106

energy level in the billiard withN5585 and a fit slope of21.66.
©2002 The American Physical Society21-1
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as is shown in Fig. 1, where we compare the tail of
averagedP(t) with the density of proper delay times for
single realization.

As can be seen from Figs. 1 and 2, the densityP(t) was
found to decay algebraically for larget for both the rectan-
gular and circular billiards. In the rectangular billiard, th
exponent of the decay was estimated asg52.6, independen
of energy in the inspected energy range of 103,«,23104

~energy is measured in units such that the level spacing in
closed billiard is 1!, giving a range in the number of propa
gating modes in the contact ranging fromN59 to 41. In
the circular billiard we inspected energies in the range
103,«,33103 ~corresponding toN ranging from 14 to
20), and found thatP decayed with an algebraic tail wit
exponentg53.05, again independent of energy within o
accuracy.~The result thatg is larger in the circular case
could be attributed to rounding errors in calculating Bes
functions in the largeN regime of interest, which introduc
small random fluctuations that mimic a small randomnes
the potential, thereby suppressing long dwell times like
the chaotic regime. The jaggedness of the smallt distribu-
tion in the circular case is due to the restricted avenue
averaging available compared to in the rectangular ca!
The classical distribution of delay times decays}t2g with
g'3 in both cases@18#. Hence, we conclude that the dens
of proper delay times decays algebraically for the integra
billiard we studied, with a power that is close but~for our
observations! not precisely equal to the classical powerg
53. Our results may be compared to one-dimensional q
siperiodic systems@19# which also exhibit an algebraic deca
of the delay time distribution.

We wish to point out that the difference in thedensityof
delay times for chaotic and integrable cavities reported h
is something quite remarkable. Although it is known th
many quantum properties are different for cavities with c
otic and integrable classical dynamics, these differences
ally pertain to the statistical fluctuations, described by cor
lation functions, or show up in small quantum interferen
corrections to a~semi!classical background@11,20#, but not
in the ~ensemble averaged! densities themselves. The on

FIG. 2. Density of proper delay times for the circle billiar
~shown in the inset! and the corresponding long-time tail of th
cumulative density*tP(t8)dt8. The distribution shown is obtaine
after averaging over small variations of the energy around the 2
energy level of the billiard, for which there were 18 conducti
modes in the point contact.
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exception known to the authors is the density of statesr(«)
in a so-called ‘‘Andreev quantum billiard,’’ an ‘‘electron bil
liard’’ that is connected to a superconducting point conta
In this case, electrons that exit the cavity and impinge on
superconductor interface are reflected as holes and
versa. As a result of this special reflection process, known
Andreev reflection@21#, r(«) is singular around the Ferm
energy«50: The density of states has a gap for a cavity w
chaotic classical dynamics, while for an integrable cav
r(«) decays algebraically as«→0 @22#. In fact, this feature
can be connected to the difference for the tail of the den
of proper delay timesP(t) reported here via the following
heuristic argument: As shown in Ref.@22#, the Andreev
quantum billiard has an eigenstate at precisely energy« if
the matrix productS(«)S†(2«) has an eigenvalue of21.
ExpandingS around«50 gives

S~«!S†~2«!'e2i«Q/\. ~3!

With this approximation, the condition for eigenstates in
cavity coupled to a superconductor simplifies to@23#

e2i«tn /\521, ~4!

wheretn is a proper delay time~eigenvalue ofQ). Equation
~4!, viewed as a constraint on the product«tn , connects
r(«) at small« to P(t) at larget. The fact that the density
of states is gapped for the chaotic Andreev quantum billi
can then be understood as following from the absence
large-time tail ofP(t), @cf. Eq. ~2!# whereas the algebrai
vanishing ofr(«) near zero energy for the integrable An
dreev quantum billiard is seen to be related to the algeb
tail of the density of delay times in that case@24#. We note,
however, that the approximation, Eq.~3!, cannot be used for
a quantitative estimate of the density of states, since it
comes unreliable for energies of«t;\, which is precisely
where the first eigenstates are expected to appear.

While we are not aware of a method by which to direc
measure the density of proper delay times for an electro
system, a direct measurement ofP(t) would be possible
using the scattering of electromagnetic waves~microwave
radiation! from a metal cavity@25–28#. With a suitable
choice of basis,SandQ may be simultaneously diagonalize
@13#. If the incoming electromagnetic radiation is in a pla
wave state that corresponds to one of these basis vectors
is slowly modulated in intensity, the ac modulation of th
outgoing waves will be delayed by the proper delay timetn
corresponding to the incoming wave mode@3#. In this way,
the qualitative difference between chaotic and integra
cavities should be readily accessible from the tail of the d
sity of proper delay times, without further ensemble aver
ing.

The authors thank N. W. Ashcroft, C. W. J. Beenakker,
A. Clerk, H. Schomerus, and X. Waintal for useful discu
sions. This work was supported by the NSF under Grant N
DMR 0086509 and DMR 9988576, by the Sloan Foundati
and by the Natural Sciences and Engineering Rese
Council of Canada.
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