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Density of proper delay times in chaotic and integrable quantum billiards
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We calculate the density(7) of the eigenvalues of the Wigner-Smith time delay matrix for two-
dimensional rectangular and circular billiards with one opening. For long times, the density of these so-called
“proper delay times” decays algebraically, in contradistinction to chaotic quantum billiards for vifich
exhibits a long-time cutoff.
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In classical mechanics, the length of time that a singleyhere r, = 7(3+/8), 7 being the average delay time. The
particle remains within a certain region of space is a uniquelyjensity of proper delay times for an integrable cavity is
defined quantity. In quantum mechanics, however, the Cofimaredly different, as we now show by consideration of the
cept of “time spent in a region” is not well defined, because rociangular and circular billiards in two dimensions.

trllerle: is no such thing as; Hermitianv\‘/‘_time-dhelay operator” - 1o find the density of proper delay times for the integrable
[1]. For scattering in one dimension, Wigner has Constrmte%illiards, we solve the Schdinger equation in the billiard

a qu_antum—mechanlcal Qelay time In terms of th? energy deénd the leads separately, and match the wave functions at the
rivative of the phase shift acquired upon scattering from th

region or potential of intereg@]. His concept was general- billiard—lead interfac¢16]. By repeating this process for all

ized by Smith[3], who introduced a matrix of delay times possible incident modes in the lead, a system of linear equa-
' " tions is formed from which the scattering mati$ its de-

J rivative S/ de, and, hence, the time-delay mati@x can be

Q= —iﬁSTg, (1) calculated. The billiards and the leads are shown to scale in

the insets of Figs. 1 and 2. To improve our statistics, we have

whereS s the scattering matrix is the energy of the inci- performed an average over the position of the lead and small

dent particle, and is Planck’s constant. In addition to being area-preserving fluctuations of the billiard aspect ratio for the
relevant for the retardation of a wave packet, the Wigneryectangular billiard[17], and the small fluctuations of the
Smith time-delay matrbQ has been shown to be related to energy e for the circular billiard. Plots of the ensemble-
the capacitanc¢4,5], thermopower(6], and, indirectly, to  averagedP(r) for these two types of billiard are shown in

parametric conductance derivatiié§ and quantum pump-  Figs. 1 and 2, respectively. We have studied the long-time

ing [8-10. _ _ _ asymptotics through the integrated dengitP(7')dr’; see

In this article, we consider the eigenvalues of the Wigneryhe insets of Figs. 1 and 2. For lare the averaged density

Smith time-delay matrix for scattering from a cavity. The j5 yepresentative of the densiB(7) of a particular billiard,
eigenvaluesr,,, 1,... N of Q are known as “proper delay

times” [3]. A cavity coupled to the outside world via a wave-
guide withN propagating channels at energyis character- 1.2
ized by N proper delay times. In the semiclassical limit of

10°

largeN, the system is described by the dengityr) of delay 0.9

times. Our aim is to compare(r) for cases where the clas- P(t)

sical dynamics of the cavity is chaotic or integrable. On the 0.6

level of classical delay times, it is well known that the delay

time distributions are different for these two cases: For an 0.3

integrable cavityP..s{ )7~ ” has algebraic tails for large

7, WhereadP ssdecays exponentially for largeif the cav- GO 5 7 5 8 10
ity has chaotic classical dynamigkl,12. Simple arguments T

based on the proximity of initial conditions to trapped peri- ) ) o
odic orbits sety<3 for the two-dimensional square and cir- _ FIG. 1. DensityP of proper delay times for a rectangular billiard
cular billiards, the two examples of integrable cavities we(Shown in the insgt The densityP is normalized to unity,
consider here. fP(T)dT_Z 1, and the delay times are measured in units of their
The densityP(r) of proper delay times for a chaotic cav- averager. The inset shows the long-time tail of the cumulative
ity was calculated by Frahm, Beenakker, and one of the aijiStl’ibutiOﬂfTP(T')dT', together with gdisplaced linear fit with a

thors[13,14 using random matrix theorjd5]. It was found slope of —1.70. The delay times were taken for an incident wave
that P(T)’ has a finite support ' with energy near the 17 600 level of the billiard, at which the con-

tact hasN=41 propagating modes, and the density shown was ob-

1 tained after averaging over small size-preserving variations of the
V(1) (r—7_), T-<7<T4 shape of the billiard and the position of the lead. The circles denote
P(r)= Sl 2 the cumulative density for a single realization near thex3.68°
0 otherwise, energy level in the billiard wittN=585 and a fit slope of-1.66.
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1201 10° exception known to the authors is the density of stai@9
) in a so-called “Andreev quantum billiard,” an “electron bil-
o9l | 1072 liard” that is connected to a superconducting point contact.
P(x) " In this case, electrons that exit the cavity and impinge on the
0.6t 10 superconductor interface are reflected as holes and vice
versa. As a result of this special reflection process, known as
0.3 10° Andreev reflectior[21], p(¢) is singular around the Fermi

energys = 0: The density of states has a gap for a cavity with
% > ) 8 chaotic classical dynamics, while for an integrable cavity,
p(e) decays algebraically as—0 [22]. In fact, this feature
can be connected to the difference for the tail of the density
of proper delay time$?(r) reported here via the following

ap

FIG. 2. Density of proper delay times for the circle billiard

(shown in the insgtand the corresponding long-time tail of the S ) -
cumulative density ,P(7')d7’. The distribution shown is obtained heuristic argument: As shown in Ref22], the Andreev

after averaging over small variations of the energy around the 2258uantum_ billiard has anTeigenState at p_recisely enerdly
energy level of the billiard, for which there were 18 conducting N matrix productS(s)S'(—¢) has an eigenvalue of 1.
modes in the point contact. ExpandingS arounde =0 gives

S(S)ST(—S)NGZiSQ/h. (3)

as is shown in Fig. 1, where we compare the tail of thewith this approximation, the condition for eigenstates in a
averagedP(7) with the density of proper delay times for a cavity coupled to a superconductor simplifieq 28]
single realization.

As can be seen from Figs. 1 and 2, the denBify) was glemlh= _1 (4)
found to decay algebraically for largefor both the rectan-
gular and circular billiards. In the rectangular billiard, the wherer,, is a proper delay timéeigenvalue o). Equation
exponent Qf the Qecay was estimatedyas2.6, independent (4), viewed as a constraint on the product,, connects
of energy in the inspected energy range 0?4@<2X_104, p(e) at smalle to P(7) at larger. The fact that the density
(energy is measured in units such that the level spacing in thgs states is gapped for the chaotic Andreev quantum billiard
closed billiard is 1, giving a range in the number of propa- ¢an then be understood as following from the absence of a
gating modes in the contact ranging fraN=9 to 41. In 3146 time tail of P(7), [cf. Eq. (2)] whereas the algebraic
the circular billiard we msp(_acted energies in the range Of\/anishing of p(s) near zero energy for the integrable An-
10°<e<3x10° (corresponding toN ranging from 14 10 greey quantum billiard is seen to be related to the algebraic
20), and found thaP decayed with an algebraic tail with 4| of the density of delay times in that cai24]. We note,
exponenty=3.05, again independent of energy within our powever, that the approximation, E@), cannot be used for
accuracy.(The result thaty is larger in the circular case 5 quantitative estimate of the density of states, since it be-
could be attributed to rounding errors in calculating Besselomes unreliable for energies of~7, which is precisely
functions in the largeN regime of interest, which introduce \yhere the first eigenstates are expected to appear.
small random fluctuations that mimic a small randomness in  \y/hile we are not aware of a method by which to directly
the potential, thereby suppressing long dwell times like inpeasure the density of proper delay times for an electronic
the chaotic regime. The jaggedness of the smalistribu- system, a direct measurement B{7) would be possible
tion in the circular case is due to the restricted avenues Oiflsing the scattering of electromagnetic wavescrowave
averaging. avail'abl.e c.ompared to i.n the rectan_gular faseradiatior) from a metal cavity[25-28. With a suitable
The classical distribution of delay times decays ” with  ¢hojce of basisSandQ may be simultaneously diagonalized
y~=3 in both casefl8]. Hence, we conclude that the density [13]. |f the incoming electromagnetic radiation is in a plane
of proper delay times decays algebraically for the integrablgyaye state that corresponds to one of these basis vectors and
billiard we studied, with a power that is close Hfior our  is sjowly modulated in intensity, the ac modulation of the
=3. Our results may be compared to one-dimensional quaorresponding to the incoming wave mod. In this way,
siperiodic systemgl9] which also exhibit an algebraic decay the qualitative difference between chaotic and integrable
of the delay time distribution. cavities should be readily accessible from the tail of the den-

We wish to point out that the difference in thlensityof  sjty of proper delay times, without further ensemble averag-
delay times for chaotic and integrable cavities reported herg,q.

is something quite remarkable. Although it is known that

many quantum properties are different for cavities with cha- The authors thank N. W. Ashcroft, C. W. J. Beenakker, A.
otic and integrable classical dynamics, these differences usu:. Clerk, H. Schomerus, and X. Waintal for useful discus-
ally pertain to the statistical fluctuations, described by corresions. This work was supported by the NSF under Grant Nos.
lation functions, or show up in small quantum interferenceDMR 0086509 and DMR 9988576, by the Sloan Foundation,
corrections to asemijclassical backgrounfl1,2q, but not and by the Natural Sciences and Engineering Research
in the (ensemble averaggdiensities themselves. The only Council of Canada.
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